1.Sum of the angles of a triangle is 180 degrees.
2.The sum of any two sides of a triangle is greater
than third side.
3.PYTHAGORAS Theorem:
In a right angled triangle (Hypotenuse)2 = (Base)2 +(Height)2
4.The line joining the mid point of a side of a triangle
to the opposite vertex is called the MEDIAN.
5.The point where the three medians of a triangle meet,
is called CENTROID. The centroid divides each of the
medians in the ratio 2:1
6.In an isosceles triangle, the altitude from the
vertex bisects the base
7.The median of a triangle divides it into two triangles
of the same area.
8.The area of the triangle formed by joining the mid points
of the sides of a given triangle is one-fourth of the area
of the given triangle.
Sunday, June 3, 2012
Area : Triangles
ALLIGATION OR MIXTURES
Important Facts and Formula:
1.Allegation:It is the rule that enables us to find the
ratio in which two of more
ingredients at the given price must be
mixed to produce a mixture of a desired price.
2.Mean Price:The cost price of a unit quantity of the mixture
is called the mean price.
3.Rule of Allegation:If two ingredients are mixed then
Quantity of Cheaper / Quantity of Dearer =
(C.P of Dearer - Mean Price) /(Mean Price - C.P of Cheaper).
C.P of a unit quantity of cheaper(c) C.P of unit quantity of dearer(d)
Mean Price(m)
(d-m) (m-c)
Cheaper quantity:Dearer quantity = (d-m):(m-c)
4.Suppose a container contains x units of liquid from which y units
are taken out and replaced by water. After n operations the
quantity of pure liquid = x (1 - y/x)^n units. To make it little easy to learn :
Quantity of Pure Liquid after n operation = L (1 – W/L) ^ n
Tuesday, May 29, 2012
Cubes upto 30
1 | 1 |
2 | 8 |
3 | 27 |
4 | 64 |
5 | 125 |
6 | 216 |
7 | 343 |
8 | 512 |
9 | 729 |
10 | 1000 |
11 | 1331 |
12 | 1728 |
13 | 2197 |
14 | 2744 |
15 | 3375 |
16 | 4096 |
17 | 4913 |
18 | 5832 |
19 | 6859 |
20 | 8000 |
21 | 9261 |
22 | |
23 | |
24 | |
25 | |
26 | |
27 | |
28 | |
29 | |
30 | 27000 |
Saturday, May 26, 2012
Theory of Equation notes for CAT
Some Rules for finding property of roots
(1) If an equation (i:e f(x)=0 ) contains all positive co-efficients of any powers of x , it has no positive roots then.
eg: x^4+3x^2+2x+6=0 has no positive roots .
(2) For an equation , if all the even powers of x have some sign coefficients and all the odd powers of x have the opposite sign coefficients , then it has no negative roots .
(3)Summarising DESCARTES RULE OF SIGNS:
For an equation f(x)=0 , the maximum number of positive roots it can have is the number of sign changes in f(x) ; and the maximum number of negative roots it can have is the number of sign changes in f(-x) .
Hence the remaining are the minimum number of imaginary roots of the equation(Since we also know that the index of the maximum power of x is the number of roots of an equation.)
(4) Complex roots occur in pairs, hence if one of the roots of an equation is 2+3i , another has to be 2-3i and if there are three possible roots of the equation , we can conclude that the last root is real . This real roots could be found out by finding the sum of the roots of the equation and subtracting (2+3i)+(2-3i)=4 from that sum. (More about finding sum and products of roots next time )
Sum and product of roots
(1) For a cubic equation ax^3+bx^2+cx+d=o
sum of the roots = – b/a
sum of the product of the roots taken two at a time = c/a
product of the roots = -d/a
(2) For a biquadratic equation ax^4+bx^3+cx^2+dx+e = 0
sum of the roots = – b/a
sum of the product of the roots taken three at a time = c/a
sum of the product of the roots taken two at a time = -d/a
product of the roots = e/a
(3) If an equation f(x)= 0 has only odd powers of x and all these have the same sign coefficients or if f(x) = 0 has only odd powers of x and all these have the same sign
coefficients then the equation has no real roots in each case(except for x=0 in the second case.
(4) Besides Complex roots , even irrational roots occur in pairs. Hence if 2+root(3) is a root , then even 2-root(3) is a root .
(All these are very useful in finding number of positive , negative , real ,complex etc roots of an equation )
Wednesday, August 3, 2011
Vedic mathematics : Easy way of finding square of a number ending with 5
- 752 = 5625 752 means 75 x 75.
The answer is in two parts: 56 and 25.
The last part is always 25.
The first part is the first number, 7, multiplied by the number "one more", which is 8:
so 7 x 8 = 56 - Similarly 852 = (8 * 9) 25 = 7225
Square of 2 digit number having same digit, AA
11 121
22 484
33 1089
44 1936
55 2916
66 4356
77 5776
88 7744
99 9801
Now suppose that number is AA
than AA = 10A+A
We know,
(a+b)^2 = a^2 + 2ab + b^2
AA ^ 2 = (10A +A) ^2 = 100*(A^2 ) + (A^2 ) + 2*10A*A= 121*(A^2 )
So all these numbers are divided by 121 :P
So if you want to find 99^2, you can do 121 * (9^2), though it may look tough this way.
=121 * 81
But for 22 ^2 = 121 * 4 = 484 , i.e. little easier
Squares upto 100
Number | Square |
1 | 1 |
2 | 4 |
3 | 9 |
4 | 16 |
5 | 25 |
6 | 36 |
7 | 49 |
8 | 64 |
9 | 81 |
10 | 100 |
11 | 121 |
12 | 144 |
13 | 169 |
14 | 196 |
15 | 225 |
16 | 256 |
17 | 289 |
18 | 324 |
19 | 361 |
20 | 400 |
21 | 441 |
22 | 484 |
23 | 529 |
24 | 576 |
25 | 625 |
26 | 676 |
27 | 729 |
28 | 784 |
29 | 841 |
30 | 900 |
31 | 961 |
32 | 1024 |
33 | 1089 |
34 | 1156 |
35 | 1225 |
36 | 1296 |
37 | 1369 |
38 | 1444 |
39 | 1521 |
40 | 1600 |
41 | 1681 |
42 | 1764 |
43 | 1849 |
44 | 1936 |
45 | 2025 |
46 | 2116 |
47 | 2209 |
48 | 2304 |
49 | 2401 |
50 | 2500 |
51 | 2601 |
52 | 2704 |
53 | 2809 |
54 | 2916 |
55 | 3025 |
56 | 3136 |
57 | 3249 |
58 | 3364 |
59 | 3481 |
60 | 3600 |
61 | 3721 |
62 | 3844 |
63 | 3969 |
64 | 4096 |
65 | 4225 |
66 | 4356 |
67 | 4489 |
68 | 4624 |
69 | 4761 |
70 | 4900 |
71 | 5041 |
72 | 5184 |
73 | 5329 |
74 | 5476 |
75 | 5625 |
76 | 5776 |
77 | 5929 |
78 | 6084 |
79 | 6241 |
80 | 6400 |
81 | 6561 |
82 | 6724 |
83 | 6889 |
84 | 7056 |
85 | 7225 |
86 | 7396 |
87 | 7569 |
88 | 7744 |
89 | 7921 |
90 | 8100 |
91 | 8281 |
92 | 8464 |
93 | 8649 |
94 | 8836 |
95 | 9025 |
96 | 9216 |
97 | 9409 |
98 | 9604 |
99 | 9801 |
100 | 10000 |