Cube :
Let a be the length of each edge. Then,
1. Volume of the cube = a3 cubic units
2. Surface Area = 6a2 square units
3. Diagonal = √ 3 a units
Cuboid :
Let l be the length, b be the breadth and h be the height of a cuboid. Then
1. Volume = lbh cu units
2. Surface Area = 2(lb+bh+lh) sq units
3. Diagonal = √ (l2+b2+h2)
Cylinder :
Let radius of the base be r and height of the cylinder be h. Then,
1. Volume = ∏r2h cu units
2. Curved Surface Area = 2∏rh sq units
3. Total Surface Area = 2∏rh + 2∏r2 sq units
Cone :
Let r be the radius of base, h be the height, and l be the slant height of the cone. Then,
1. l2 = h2 + r2
2. Volume = 1/3(∏r2h) cu units
3. Curved Surface Area = ∏rl sq units
4. Total Surface Area = ∏rl + ∏r2 sq units
Sphere :
Let r be the radius of the sphere. Then,
1. Volume = (4/3)∏r3 cu units
2. Surface Area = 4∏r2 sq units
Hemi-sphere :
Let r be the radius of the hemi-sphere. Then,
1. Volume = (2/3)∏r3 cu units
2. Curved Surface Area = 2∏r2 sq units
3. Total Surface Area = 3∏r2 sq units
Prism :
Volume = (Area of base)(Height
Sunday, June 3, 2012
Volume and surface Area
Area and Perimeter Formulae
AREA & PERIMETER :
Shape Area Perimeter
Circle ∏ (Radius)2 2∏(Radius)
Square (side)2 4(side)
Rectangle length*breadth 2(length+breadth)
1. Area of a triangle = 1/2*Base*Height or
2. Area of a triangle = √ (s(s-(s-b)(s-c)) where a,b,c are the lengths of the sides and s = (a+b+c)/2
3. Area of a parallelogram = Base * Height
4. Area of a rhombus = 1/2(Product of diagonals)
5. Area of a trapezium = 1/2(Sum of parallel sides)(distance between the parallel sides)
6. Area of a quadrilateral = 1/2(diagonal)(Sum of sides)
7. Area of a regular hexagon = 6(√3/4)(side)2
8. Area of a ring = ∏(R2-r2) where R and r are the outer and inner radii of the ring.
VOLUME & SURFACE AREA :
Cube :
Let a be the length of each edge. Then,
1. Volume of the cube = a3 cubic units
2. Surface Area = 6a2 square units
3. Diagonal = √ 3 a units
Cuboid :
Let l be the length, b be the breadth and h be the height of a cuboid. Then
1. Volume = lbh cu units
2. Surface Area = 2(lb+bh+lh) sq units
3. Diagonal = √ (l2+b2+h2)
Cylinder :
Let radius of the base be r and height of the cylinder be h. Then,
1. Volume = ∏r2h cu units
2. Curved Surface Area = 2∏rh sq units
3. Total Surface Area = 2∏rh + 2∏r2 sq units
Cone :
Let r be the radius of base, h be the height, and l be the slant height of the cone. Then,
1. l2 = h2 + r2
2. Volume = 1/3(∏r2h) cu units
3. Curved Surface Area = ∏rl sq units
4. Total Surface Area = ∏rl + ∏r2 sq units
Sphere :
Let r be the radius of the sphere. Then,
1. Volume = (4/3)∏r3 cu units
2. Surface Area = 4∏r2 sq units
Hemi-sphere :
Let r be the radius of the hemi-sphere. Then,
1. Volume = (2/3)∏r3 cu units
2. Curved Surface Area = 2∏r2 sq units
3. Total Surface Area = 3∏r2 sq units
Prism :
Volume = (Area of base)(Height
Areas : Parallelogram
1.The diagonals of a Parallelogram bisect each other.
2.Each diagonal of a Parallelogram divides it into two triangles of the same area.
3.The diagonals of a Rectangle are equal and bisect each other
4.The diagonals of a Square are equal and bisect each other at right angles.
5.The diagonals of a Rhombus are unequal and bisect each other at right angles.
6.A Parallelogram and a Rectangle on the same base and between the same parallels are equal in area.
7.Of all he parallelogram of given sides the parallelogram which is a rectangle has the greatest area.
Area : Triangles
1.Sum of the angles of a triangle is 180 degrees.
2.The sum of any two sides of a triangle is greater
than third side.
3.PYTHAGORAS Theorem:
In a right angled triangle (Hypotenuse)2 = (Base)2 +(Height)2
4.The line joining the mid point of a side of a triangle
to the opposite vertex is called the MEDIAN.
5.The point where the three medians of a triangle meet,
is called CENTROID. The centroid divides each of the
medians in the ratio 2:1
6.In an isosceles triangle, the altitude from the
vertex bisects the base
7.The median of a triangle divides it into two triangles
of the same area.
8.The area of the triangle formed by joining the mid points
of the sides of a given triangle is one-fourth of the area
of the given triangle.
ALLIGATION OR MIXTURES
Important Facts and Formula:
1.Allegation:It is the rule that enables us to find the
ratio in which two of more
ingredients at the given price must be
mixed to produce a mixture of a desired price.
2.Mean Price:The cost price of a unit quantity of the mixture
is called the mean price.
3.Rule of Allegation:If two ingredients are mixed then
Quantity of Cheaper / Quantity of Dearer =
(C.P of Dearer - Mean Price) /(Mean Price - C.P of Cheaper).
C.P of a unit quantity of cheaper(c) C.P of unit quantity of dearer(d)
Mean Price(m)
(d-m) (m-c)
Cheaper quantity:Dearer quantity = (d-m):(m-c)
4.Suppose a container contains x units of liquid from which y units
are taken out and replaced by water. After n operations the
quantity of pure liquid = x (1 - y/x)^n units. To make it little easy to learn :
Quantity of Pure Liquid after n operation = L (1 – W/L) ^ n
Tuesday, May 29, 2012
Cubes upto 30
1 | 1 |
2 | 8 |
3 | 27 |
4 | 64 |
5 | 125 |
6 | 216 |
7 | 343 |
8 | 512 |
9 | 729 |
10 | 1000 |
11 | 1331 |
12 | 1728 |
13 | 2197 |
14 | 2744 |
15 | 3375 |
16 | 4096 |
17 | 4913 |
18 | 5832 |
19 | 6859 |
20 | 8000 |
21 | 9261 |
22 | |
23 | |
24 | |
25 | |
26 | |
27 | |
28 | |
29 | |
30 | 27000 |
Saturday, May 26, 2012
Theory of Equation notes for CAT
Some Rules for finding property of roots
(1) If an equation (i:e f(x)=0 ) contains all positive co-efficients of any powers of x , it has no positive roots then.
eg: x^4+3x^2+2x+6=0 has no positive roots .
(2) For an equation , if all the even powers of x have some sign coefficients and all the odd powers of x have the opposite sign coefficients , then it has no negative roots .
(3)Summarising DESCARTES RULE OF SIGNS:
For an equation f(x)=0 , the maximum number of positive roots it can have is the number of sign changes in f(x) ; and the maximum number of negative roots it can have is the number of sign changes in f(-x) .
Hence the remaining are the minimum number of imaginary roots of the equation(Since we also know that the index of the maximum power of x is the number of roots of an equation.)
(4) Complex roots occur in pairs, hence if one of the roots of an equation is 2+3i , another has to be 2-3i and if there are three possible roots of the equation , we can conclude that the last root is real . This real roots could be found out by finding the sum of the roots of the equation and subtracting (2+3i)+(2-3i)=4 from that sum. (More about finding sum and products of roots next time )
Sum and product of roots
(1) For a cubic equation ax^3+bx^2+cx+d=o
sum of the roots = – b/a
sum of the product of the roots taken two at a time = c/a
product of the roots = -d/a
(2) For a biquadratic equation ax^4+bx^3+cx^2+dx+e = 0
sum of the roots = – b/a
sum of the product of the roots taken three at a time = c/a
sum of the product of the roots taken two at a time = -d/a
product of the roots = e/a
(3) If an equation f(x)= 0 has only odd powers of x and all these have the same sign coefficients or if f(x) = 0 has only odd powers of x and all these have the same sign
coefficients then the equation has no real roots in each case(except for x=0 in the second case.
(4) Besides Complex roots , even irrational roots occur in pairs. Hence if 2+root(3) is a root , then even 2-root(3) is a root .
(All these are very useful in finding number of positive , negative , real ,complex etc roots of an equation )