Friday, September 4, 2009
Time table I want to practise
Eve 5.00 - 7.00 vocab
7.00 - 8.00 coding
8.00 - 9.00 dinner etc
9.00 -12.00cs subject
12.00-2.00 phone
2.00-5.00 sleep
5.00- 7
7.00 - 8.00 coding
8.00 - 9.00 dinner etc
9.00 -12.00cs subject
12.00-2.00 phone
2.00-5.00 sleep
5.00- 7
Quadratic Equation
Quadratic equations looks like: ax2 + bx + c = 0
where a,b,c are real numbers, and a ≠ 0. Every quadratic equation can have 0, 1 or 2 real decidions derived by the formula:
The number D = b2 - 4ac is called discriminant.
If D < 0 then the quadratic equation have no decidions. If D = 0 then the quadratic equation have 1 decidion x = - b/2a. If D > 0 then the quadratic equation have 2 decidions.
Example:
If we have equation: x2 + 3x - 4 = 0
a = 1, b = 3, c = -4
If a > 0 then graph horns pointing down:
if a < 0 then graph horns pointing up:
The midpoint of any parabola is the point x = -b/2a.
Sign of Quadratic Equation
Let f(x) = ax^2 + bx + c , where a,b,c &# 949; R and a ≠ 0
These formulas are called Vieta's formulas.
We can find the roots x1 and x2 of a quadratic equation by solving the system above.
Maxima and minima
Maxima a>0 x= - b/2a Max = -(b^2 -4ac)/4a
Minima a<0 -----------------------------------------(same)
where a,b,c are real numbers, and a ≠ 0. Every quadratic equation can have 0, 1 or 2 real decidions derived by the formula:
If D < 0 then the quadratic equation have no decidions. If D = 0 then the quadratic equation have 1 decidion x = - b/2a. If D > 0 then the quadratic equation have 2 decidions.
Example:
If we have equation: x2 + 3x - 4 = 0
a = 1, b = 3, c = -4
Parabola
The graph of a quadratic equatin is called a parabola.If a > 0 then graph horns pointing down:
Sign of Quadratic Equation
Let f(x) = ax^2 + bx + c , where a,b,c &# 949; R and a ≠ 0
Vieta's formulas
If x1 and x2 are the roots of the quadratic equation ax2 + bx + c = 0 then:These formulas are called Vieta's formulas.
We can find the roots x1 and x2 of a quadratic equation by solving the system above.
Maxima and minima
Maxima a>0 x= - b/2a Max = -(b^2 -4ac)/4a
Minima a<0 -----------------------------------------(same)
Multiplication Tables
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
Subscribe to:
Posts (Atom)